Optimization of functionally graded metallic foam insulation under transient heat transfer conditions
نویسندگان
چکیده
The problem of minimizing the maximum temperature of a structure insulated by a functionally graded metal foam insulation under transient heat conduction is studied. First, the performance of insulation designed for steady-state conditions is compared with uniform solidity insulation. It is found that the optimum steady-state insulation performs poorly under transient conditions. Then, the maximum structural temperature of a two-layer insulation with constant solidity for each layer is minimized by varying the solidity profile for a given total thickness and mass. It is found that the cooler inner layer of the optimal design has high solidity, while the hotter outer layer has low solidity. This is in contrast to the steady-state optimum, where the solidity profile is the reverse.
منابع مشابه
Non-Fourier Heat Transfer Analysis of Functionally Graded Spherical Shells under Convection-Radiation Conditions
Non-Fourier heat transfer analysis of functionally graded (FG) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. It is assumed that the material properties have continuous variations along the thickness direction. The incremental differential quadrature method (IDQM) as an accurate and computationally efficient numerical ...
متن کاملThe method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases
In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.
متن کاملA Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders
In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...
متن کاملEVALUATION OF PRESSURE EFFECT ON HEAT TRANSFER COEFFICIENT AT THE METAL- MOLD INTERFACE FOR CASTING OF A356 AL ALLOY
Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer a...
متن کاملTransient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions
Assuming arbitrary boundary and initial conditions, a transient thermo-elastic analysis of a rotating thick cylindrical pressure vessel made of functionally graded material (FGM) subjected to axisymmetric mechanical and transient thermal loads is presented. Time-dependent thermal and mechanical boundary conditions are assumed to act on the boundaries of the vessel. Material properties of the ve...
متن کامل